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Received 24 November 1982, in final form 28 April 1983 

Abstract. We show that, contrarily to what Flessas and Anagnostatos claim in a recent 
Letter to the Editor of this Journal, the so-called Hill determinant method is perfectly 
suited to the numerical resolution of Schrodinger’s equation. 

1. Introduction 

Recently Flessas and Anagnostatos (1982)  claimed that the Hill determinant (HD) 
method was unable to furnish the correct spectrum of Schrodinger’s equation. We 
intend to show that their argument is based on an inaccurate analysis of the problem 
so that their conclusions appear as completely misleading. It must be pointed out 
that two papers (Flessas 1979, 1981) dealing with the rotating harmonic oscillator 
have been similarly criticised by Froman er a1 (1980)  and Karlsson et a1 (1982) .  

2. The HD method 

In order to clarify our argument we shall concentrate on the example treated by 
Flessas and Anagnostatos (1982),  i.e. the calculation of the eigenvalues of the anhar- 
monic oscillator: 

+” + ( E  - x - AX ‘)+ = 0. (1) 

We try the solution by setting 

(even states only; the odd states are treated similarly). It immediately follows that 
the ck obey the third-order recurrence relation 

(2k + 1) (2k  +2 )ck+ l  f ( E - 2 w  -8wk)ck + 1 4 W 2 -  l ) c k - , - h C k - 2 = 0  ( 3 )  

with C-I = C-2 = C-3 = . . . = 0 and k = 0, 1 , 2 ,  . . . . The role played by the parameter 
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w will be mentioned later. The HD method as presented by Biswas et a1 (1971, 1973) 
consists of rewriting the recurrence in the form of an infinite linear homogeneous 
system with the unknowns CO, C 1 ,  C z ,  . . . and then equating to zero the determinant 
D of the corresponding infinite matrix. That equation may be written as 

D =  

E - 2 w  2 
4 w 2 - 1  E - l o w  12 

-A 4 w 2 - 1  E . - l 8 w  30 
-A 4 w 2 - 1  E-26w 56 = 0. 

The numerical calculation of the roots of D is performed by truncating D to its 
kth-order approximant D'k' and calculating the limit of the roots of D'k' when k 
tends to infinity. Banerjee (1978, 1979) first observed that the numerical value given 
to the dummy parameter w has a great influence on the rapidity of the convergence 
process. It immediately appeared that the value w = i chosen by Biswas et a1 (1971, 
1973) was far from optimal. Hautot and Magnus (1979) explained that phenomenon 
and presented accurate theoretical estimates for the best w values. Flessas and 
A,nagnostatos (1982) contest the validity of the method: they claim that the calculated 
c k  do not necessarily lead to a square integrable function 4 = exp(-wx2) x C k X Z k .  

However, we now proceed to show that they really do. A simple examination of 
recurrence (3) led Flessas and Anagnostatos to the conclusion that 

ck + 1 / ck - (A  /4  k *) I 3  

(equation (7) of their paper (1982) where w = i for the sake of simplicity). Then they 
crudely summed that asymptotic formula between 1 and k to obtain the following 
(wrong) asymptotic expression for c k  : 

ck - (A/4)k/3/k !2'3.  

Then introducing those ck in ( 2 )  they arrived at the conclusion that the resulting 4 
became unphysical when A > 0.5. They therefore concluded the invalidity of the whole 
method described by Biswas et a1 (1971, 1973). That line of argument is erroneous 
because the correct asymptotic behaviour of c& is quite different. The correct approach 
to the problem is as follows: recurrences like (3) have been studied by Birkhoff (1930) 
and Birkhoff and Trjitzinsky (1933) who showed that their solutions are asymptotic 
to expressions of the type k wa exp(ak + pk"  + . . .)(ln k)r. Denef and Piessens (1974) 
have shown how to calculate the coefficients a, w, a,  p, . . . which are present in these 
asymptotic scales and Hautot and Ploumhans (1979) have published extended tables 
of coefficients which are useful in practical examples. If we apply that procedure to 
our recurrence (3) we find that three independent solutions are asymptotic to 
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It is easily shown that CL’’ is dominant when k is large and that both CL’) and 
CL2) are dominated: IC‘,“’ 1 >IC:) I - ICL2) 1 .  The general solution of recurrence (3)  is 
therefore asymptotic to a linear combination of the Cif’ : 

where a, p and y depend on E and on the initial conditions. We note that c k  is 
generally asymptotic to c?’ except if a = 0. 

A simple inspection of recurrence (3) shows that the limiting conditions C-, = 0 
( n  = 1 , 2 ,  . . .) are automatically fulfilled if one chooses C-’ = C2 = 0 so that a,  p and 
y are defined as functions of E except for an unimportant multiplicative constant. 
When E is taken at an arbitrary value a does not generally vanish and the correspond- 
ing c k  are dominant; when E is equal to well chosen values then a ( E )  vanishes and 
the corresponding c k  are subdominant. Now let us recall that Schrodinger’s equation 
(1) has two linearly independant solutions which are asymptotic to 

$div-/-$’ exp(A 1’21X13/3), 

IL,,,, - /x I - ’  exp(-A 1’2/x  13/3) 

in each sector of the complex plane (Sibuya 1975). 
When E is chosen arbitrarily the (lr function which vanishes at x‘ = +a generally 

diverges at x = -a. However, for well selected E values the same function is well 
behaved at x = +CO and x = -a: these are the eigenvalues of the problem. If we recall 
the starting expansion set for CL, i.e. II, = exp(-wx2) C k X 2 k ,  it appears that $conv and 
(Ldiv are respectively generated by subdominant and dominant c k  sequences (a direct 
proof is reported in the appendix). From that viewpoint the quantised values of the 
energy parameter E are those for which a subdominant sequence c k  exists which is 
characterised by the initial conditions C-, = 0: the resulting generated $ function will 
behave like at x =+a and also at x =-a because of the even parity of the 
expression which defines $ in terms of the c k .  We may express this in other words: 
the minimal (distinguished) solution of the recurrence generates the minimal (distin- 
guished) solution of the associated differential equation. Because we need to determine 
a subdominant solution of the starting recurrence we now turn to its practical calcula- 
tion through the generalised Miller algorithm. 

Let us consider a linear homogeneous recurrence of order n written as 

Let us consider a fundamental system of n independent solutions whose asymptotic 
behaviours are contrasted with the maximum. For k sufficiently large one has 

It is well known (see e.g. Gautschi 1967) that the forward recursion is convenient for 
the stable numerical calculation of the dominant solution CL’) while the backward 
recursion stably calculates the dominated C?’. That procedure is known as Miller’s 
algorithm (Miller 1952). The stable calculation of the intermediate solutions 
CL*’ . . . C?-”*is only possible through a generalised algorithm which has been studied 
by Oliver (1968). To calculate C f )  ( i  E (1, . . . , n ) )  one has to solve the following 
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A~'!; ' -"C_, + . .  .+Al!llCi ,~ 
Ail; l lC-I  + .  . .+A:!'2C,-, I 

AL"!2C-~ 
0 = -  

0 

-I 

f I 

E - 2 0  2 
4 w 2 - 1  E - l o o  12 

-A 4 w 2 - 1  E-18w 30 

2K(2K - 1 )  
- A  ( 4 w 2 - 1 )  E-2w-8wK 0 

If we now impose the initial conditions C-l = C-* = 0 we retrieve a linear homogeneous 
system. Its nontrivial solution exists if and only if we require the vanishing of its 
determinant which is nothing other than the HD of the problem. 

In summary, we have shown that equating the HD to zero is equivalent to searching 
for the subdominant solution of the associated recurrence compatible with C - ,  = 0 
(n = 1,2,  . . ,). That minimal solution is precisely the one which generates the minimal 
solution of the corresponding Schrodinger equation. 

3. Discussion and conclusion 

It is interesting to try to understand how HDM works. First of all we notice that 
Schrodinger's equation (1) is of order two while the associated recurrence (3) is of 
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order three, so there is no one-to-one correspondence between the solutions of (1) 
and (3). In fact, simple algebraical calculations indicate that the $ function defined 
by (2) with the c k  solutions of recurrence (3) obeys the following non-homogeneous 
differential equation: 

2 $ ” + ( E  - x z  -Ax4)$ = [AC-2+AC-1~2- (4w - l)C-l] exp(-wx2). 

This equation coincides with the starting equation (1) if and only if we impose 
C-l = C-z = 0. However, if we impose three initial conditions C-2 = C1 = 0 and CO = 1 
(this last value being inessential) on the solution of a third-order recurrence like (3), 
we generate a dominant sequence c k  unless E takes one of those well selected values 
for which a subdominant solution of (3) exists characterised by C-2 = C-l = 0. Those 
values are precisely the eigenvalues of the problem since a dominant solution of (3) 
is unable to generate the required minimal solution of (1). In other words, recurrence 
(3) possesses a subdominant solution, for any E, but with non-vanishing starting values 
C-2 and C-l. The eigenvalues are precisely found when the extra conditions C2 = 
C1 = 0 are fulfilled. The correct interpretation to be given to HDM is therefore not 
to express a consistency condition on the infinite linear homogeneous system (3) as 
initially thought by Biswas et a1 (1971), but to get a finite approximation to a 
subdominant solution of the recurrence relation (3) which is consistent with the 
initialisation C-l = C-2 = 0. 

Once the eigenvalues E have been determined the sequence c k  may be computed 
through the recursive scheme (3). However, great care must be taken not to use the 
simple forward recursion which is unstable for subdominant solutions (Gautschi 1967). 
Table 1 clearly illustrates that point where the correct values are given by the 
generalised Miller algorithm. 

In conclusion, there is no reason to doubt that HDM leads to the correct eigenvalue 
spectrum in the case of anharmonic oscillators. We have tested many of them (Hautot 
and Magnus 1979) up to x 2  + A x  l2  without encountering any difficulties; the calculated 
wavefunctions always exhibit the expected asymptotic behaviour at large x. The 
eigenvalues coincide with those which can be obtained by a simple method due to 
Killingbeck (1981) which discusses the changes of sign of $(E, x )  (for x large) when 
E increases and passes through an eigenvalue. It is remarkable that the same eigen- 
values are obtained when the same discussion is made on C,(E) (for n large). 

Appendix 

Here we use a direct method to demonstrate that the dominant (subdominant) solution 
of recurrence (3) generates a (Ldiv function. 

Using the asymptotic behaviour of the c k  we may write (1 = 0, 1 ,2)  

CO 
$“’= Cf’ exp(-wx2)xZk -1 e ~ p ( - w x ’ ) a ~ k - ~ / ~ x * ~  e ~ p ( b k ” ~ - c k ” ~ ) / r ( 2 k / 3 )  

k = O  

where we have set for the sake of brevity 

a = exp(2id/3)A 1/3/91/3, 

c = 21/3h-2’3(4~2 - 3) exp(2ia1/3)/6. 

b = w21/3A-1/3 exp(4id/3),  
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Table 1. (a) Wrong Ck-values calculated (with six significant figures) through the simple 
forward recursion (3). The initial error is dramatically amplified so that for k > 25 
the C, become dominant, i.e. of unique sign. The number 25 is unimportant: it depends 
on the number of significant figures used in the calculation. (b)  Correct Ck-values calculated 
through the generalised Miller algorithm. Note the expected alternation of signs. We 
have chosen CO = 1 in both cases. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-1.209E-01 
-3.7878-02 

6.873E -03 
3.634E-04 

-1.468E-04 
4.066E - 06 
1.529E -06 

-1.289E-07 
-6.735E-09 

1.378E -09 
-2.090E-11 
-7.757E- 12 

4.903E - 13 
1.974E- 14 

-3.193E- 15 
5.479E- 17 
1.191E- 17 

-6.263E- 19 
-1,248E - 20 

3.212E-21 

-1.209E - 01 
-3.787E - 02 

6.873E - 03 
3.634E - 04 

-1.468E - 04 
4.063E -06 
1.529E -06 

-1.290E - 07 
-6.747E - 09 

1.377E-09 
-2.1 13E- 11 
-7.786E- 12 

4.868E - 13 
1.936E- 14 

-3.234E- 15 
5.057E- 17 
1.150E-17 

-6.649E- 19 
-1.595E-20 

2.912E-21 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

-3.310E- 23 
-4.764E - 24 

5.738E-25 
1.600E-26 

-3.469E-28 
9.513E- 29 
6.244E - 30 
1.622E- 31 
1.987E-32 
1.532E- 33 
6.994E-35 
4.611E- 36 
3.158E- 37 
1.681E - 38 
9.498E -40 
5.686E-41 
3.069E -42 
1.629E-43 
8.849E -45 

-5.820E-23 
-6.791E -24 

4.154E -25 
3.996E-27 

-1.230E-27 
3.205E -29 
1.860E-30 

-1.346E- 31 
2.992E - 34 
2.725E - 34 

-9.159E -36 
-2.440E - 37 

2.449E - 38 
-2.968E -40 
-3.36OE-41 

1.477E - 42 
1.184E -44 

-2.641E - 45 
5.623E-47 

That series for 4"' is asymptotic to the following integral (x large): 

Such an integral can be evaluated by the saddle point method: 

I expf(z)  dz - ( - 2 ~ / f " ( z * ) ) ' / ~  expf(z*) 

where the saddle point z *  is defined by the equation f ' ( z * )  = 0. In our case we have 
used Stirling's formula: 

f ( z  ) = --ox + 22 In x + ( 3  + ln[a ( f )2 /33)z  - 2 ln t - $2 In z + bz 2 / 3  - cz ' I3 .  

The unique saddle point off  is easily deduced asymptotic to 
3 3 / 2  3 z * - i a  x . 

Then we obtain the final result: 

G ' ~ )  - ( -~T/P(z  exp f ( z  *) 
- 1  - x exp(*A 'I2x3/3) (x -+CO) 

where the + sign corresponds to the case 1 = 0 (dominant ck: $"'- i,bdiv) and the - 
sign corresponds to both cases 1 = 1 , 2  (subdominant ck: $ I f ) -  $,,,,,). 
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